
A Parallel Maximal Independent Set Algorithm�Mark AdamsyAbstractThe parallel construction ofmaximal independent sets is a useful building block for many algorithms inthe computational sciences, including graph coloring and multigrid coarse grid creation on unstructuredmeshes. We present an e�cient asynchronous maximal independent set algorithm for use on parallelcomputers, for \well partitioned" graphs, that arise from �nite element models. For appropriately par-titioned bounded degree graphs, it is shown that the running time of our algorithm under the PRAMcomputational model is O(1), which is an improvement over the previous best PRAM complexity for thisclass of graphs. We present numerical experiments on an IBM SP, that con�rm our PRAM complexitymodel is indicative of the performance one can expect with practical partitions on graphs from �niteelement problems.Key words: maximal independent sets, multigrid, parallel algorithms, graph coloringAMS(MOS) subject classi�cation: 65F10, 65F50, 65Y05, 68Q22, 68R10, 05C851 IntroductionAn independent set is a set of vertices I � V in a graph G = (V;E), in which no two members of I areadjacent (i.e. 8v; w 2 I; (v; w) =2 E); a maximal independent set (MIS) is an independent set for which noproper superset is also an independent set. The parallel construction of an MIS is useful in many computingapplications, such as graph coloring and coarse grid creation for multigrid algorithms on unstructured �niteelement meshes. In addition to requiring an MIS (which is not unique), many of these applications wantan MIS that maximizes a particular application dependent quality metric. Finding the optimal solution inmany of these applications is an NP-complete problem i.e., they can not be solved in polynomial time orcan be solved by a nondeterministic(N) machine in polynomial(P) time [7]; for this reason greedy algorithmsin combination with heuristics are commonly used for both the serial and parallel construction of MISs.Many of the graphs of interest arise from physical models, such as �nite element simulations. These graphsare sparse and their vertices are connected to only their nearest physical neighbors. The vertices of suchgraphs have a bound � on their maximum degree. We will discuss our method of attaining O(1) PRAMcomplexity bounds for computing an MIS on such graphs, namely �nite element models in three dimensionalsolid mechanics.Our algorithm is notable in that it does not rely on global random vertex ordering [8, 10], althoughit is closely related to these algorithms, and can be viewed as a \two level" random algorithm as we userandom (actually just distinct) processor identi�ers. Our O(1) complexity (on �nite element graphs) is animprovement of the O(log(n)= log log(n)) complexity of the random algorithms [8]. Nor does our algorithmrely on deterministic coin tossing [6, 4] to achieve correctness in a distributed memory computing environment- but explicitly uses knowledge of the graph partitioning to provide for the correct construction of an MIS inan e�cient manner. Deterministic coin tossing algorithms [6] have O(log� n) complexity on bounded degreegraphs (a more general class of graphs than �nite element graphs), although their constant �2 log� issomewhat higher than ours �, and the ability of these methods to incorporate heuristics is also not evident.We will not include the complexity of the graph partitionings in our complexity model, though ourmethod explicitly depends on these partitions. We feel justi�ed in this as it is reasonable to assume that�A preliminary version of this paper appeared in the proceedings of the Fifth Copper Mountain Conference on IterativeMethods, April 1998yDepartment of Civil Engineering, University of California Berkeley, Berkeley CA 94720 (madams@cs.berkeley.edu). Thiswork is supported by DOE grant No. W-7405-ENG-48 1

the MIS program is embedded in a larger application that requires partitions that are usually much betterthan the partitions that we require. The design of an O(1) partitioning algorithm, for �nite element graphs,whose partitionings can be proven to satisfy our requirements, described in x3, is an open problem discussedin x5. Our numerical experiments con�rm our O(1) complexity claim.Additionally, the complexity model of our algorithm has the attractive attribute that it requires far fewerprocessors than vertices, in fact we need to restrict the number of processors used in order to attain optimalcomplexity. Our PRAM model uses P = O(n) processors (n = jV j) to compute an MIS, but we restrict Pto be at most a �xed fraction of n to attain the optimal theoretical complexity. The upper bound on thenumber of processors is however far more than the number of processors that are generally used in practiceon common distributed memory computers of today; so given the common use of relatively fat processornodes in contemporary computers, our theoretical model allows for the use of many more processors thanone would typically use in practice. Thus, in addition to obtaining optimal PRAM complexity bounds, ourcomplexity model reects the way that modern machines are actually used.This paper is organized as follows. In x2 we describe a new asynchronous distributed maximal independentset algorithm, in x3 we show that our algorithm has optimal performance characteristics under the PRAMcommunication model for the class of graphs from discretized PDEs. Numerical results of the method arepresented in section x4, and we conclude in x5 with possible directions for future work.2 An asynchronous distributed memory maximal independent setalgorithm.Consider a graph G = (V;E) with vertex set V, and edge set E, an edge being an unordered pair of distinctvertices. Our application of interest is a graph which arises from a �nite element analysis, where elementscan be replaced by the edges required to make a clique of all vertices in each element, see Figure 1. Finiteelement methods, and indeed most discretization methods for PDEs, produce graphs in which vertices onlyshare an edge with their physically nearest neighbors, thus the degree of each vertex v 2 V can be bounded bysome modest constant �. We will restrict ourselves to such graphs in our complexity analysis. Furthermoreto attain our complexity bounds we must also assume that vertices are \partitioned well" (which will bede�ned later) across the machine.
GraphFE meshFigure 1: Finite element quadrilateral mesh and its corresponding graphWe will introduce our algorithm by �rst describing the basic random greedy MIS algorithms described in[10]. We will utilize an object oriented notation from commonprogramming languages, as well as set notation,in describing our algorithms; this is done to simplify the notation and we hope it does not distract the unini-tiated reader. We endow vertices v with a mutable data member state, state 2 fselected; deleted; undoneg.All vertices begin in the undone state, and end in either the selected or deleted state; the MIS is de�ned asthe set of selected vertices. Each vertex v will also be given a list of adjacencies adjac.Definition 1: The adjacency list for vertex v is de�ned by v:adjac = fv1 j (v; v1) 2 EgWe will also assume that v:state has been initialized to the undone state for all v and v:adjac is as de�nedin Definition 1 in all of our algorithm descriptions. With this notation in place we show the basic MIS2

algorithm (BMA) in Fgure 2.forall v 2 Vif v:state = undone thenv:state selectedforall v1 2 v:adjacv1:state deletedI fv 2 V j v:state = selectedgFigure 2: Basic MIS Algorithm (BMA) for the serial construction of an MISFor parallel processing we partition the vertices onto processors and de�ne the vertex set Vp owned byprocessor p of P processors. Thus V = V1 [V2 [:::[VP is a disjoint union, and for notational conveniencewe give each vertex an immutable data member proc after the partitioning is calculated to indicate whichprocessor is responsible for it. De�ne the edge separator set ES to be the set of edges (v; w) such thatv:proc 6= w:proc. De�ne the vertex separator set V S = fv j (v; w) 2 ESg (G is undirected, thus (v; w) and(w; v) are equivalent). De�ne the processor vertex separator set, for processor p, by V Sp = fv j (v; w) 2 ESand (v:proc = p or w:proc = p)g. Further de�ne a processors boundary vertex set by V Bp = Vp \ V S , anda processors local vertex set by V Lp = Vp � V Bp . Our algorithm provides for correctness and e�ciency in adistributed memory computing environment by �rst assuming a given ordering or numbering of processorsso that we can use inequality operators with these processor numbers. As will be evident later, if one vertexis placed on each processor (an activity of theoretical interest only), then our method will degenerate to oneof the well known random types of algorithms [10].We de�ne a function mpivs(vertex set) (an acronym for \maximum processor in vertex set"), whichoperates on a list of vertices:Definition 2: mpivs(vertex set) = �maxfv:proc j v 2 vertex set; v:state 6= deletedg if vertex set 6= ;�1 if vertex set = ;�Given these de�nitions and operators, our algorithm works by implementing two rules within the BMArunning on processor p, as shown below.� Rule 1: Processor p can select a vertex v only if v:proc = p.� Rule 2: Processor p can select a vertex v only if p � mpivs(v:adjac).Note that Rule 1 is a static rule, because v:proc is immutable, and can be enforced simply by iteratingover Vp on each processor p when looking for vertices to select. In contrast, Rule 2 is dynamic because theresult of mpivs(v:adjac) will in general change (actually monotonically decrease) as the algorithm progressesand vertices in v:adjac are deleted.2.1 Shared Memory AlgorithmOur Shared Memory MIS Algorithm (SMMA) in Figure 3, can be written as a simple modi�cation to BMA.We have modi�ed the vertex set that the algorithm running on processor p uses (to look for vertices toselect), so as to implement Rule 1. We have embedded the basic algorithm in an iterative loop and addeda test to decide if processor p can select a vertex, for the implementation of Rule 2. Note, the last line ofFigure 3 may delete vertices that have already been deleted, but this is inconsequential.There is a great deal of exibility in the order which vertices are chosen in each iteration of the algorithm.Herein lies a simple opportunity to apply a heuristic, as the �rst vertex chosen will always be selectable andthe probability is high that vertices which are chosen early will also be selectable. Thus if an application canidentify vertices that are \important" then those vertices can be ordered �rst and so that a less importantvertex can not delete a more important vertex. For example, in the automatic construction of coarse grids formultigrid equation solvers on unstructured meshes one would like to give priority to the boundary vertices3

while fv 2 Vp j v:state = undoneg 6= ;forall v 2 Vp - - implementation of Rule 15: if v:state = undone then6: if p � mpivs(v:adjac) then - - implementation of Rule 27: v:state selectedforall v1 2 v:adjacv1:state deletedI fv 2 V j v:state = selectedgFigure 3: Shared Memory MIS Algorithm (SMMA) for MIS, running on processor p[1]. This is an example of a static heuristic, that is a ranking which can be calculated initially and doesnot change as the algorithm progresses. Dynamic heuristics are more di�cult to implement e�ciently inparallel. An example is the saturation degree ordering (SDO) used in graph coloring algorithms [3]: SDOcolors the vertex with a maximumnumber of di�erent colored adjacencies; the degree of an uncolored vertexwill increase as the algorithm progresses and its neighbors are colored. We know of no MIS application, thatdoes not have a quality metric to maximize - thus it is of practical importance that an MIS algorithm canaccommodate the use of heuristics e�ectively. Our method can still implement the \forall" loops, with aserial heuristic, i.e. we can iterate over the vertices in Vp in any order that we like. To incorporate staticheuristics globally (i.e. a ranking of vertices), one needs to augment our rules and modify SMMA, see [1] fordetails, but in doing so we lose our complexity bounds, in fact if one assigns a random rank to all verticesthis algorithm would degenerate to the random algorithms described in [10, 8].To demonstrate correctness of SMMA we will proceed as follows: show termination; show that thecomputed set I is maximal; and show that independence of I = fv 2 V j v:state = selectedg is an invariantof the algorithm.� Termination is simple to prove and we will do so in x3.� To show that I will be maximal we can simply note that if v:state = deleted for v 2 V , v must havea selected vertex v1 2 v:adjac as the only mechanism to delete a vertex is to have a selected neighbordo so. All deleted vertices thus have a selected neighbor and they can not be added to I and maintainindependence, hence I is maximal.� To show that I is always independent �rst note that I is initially independent - as I is initially theempty set. Thus it su�ces to show that when v is added to I, in line 7 of Figure 3, no v1 2 v:adjac isselected. Alternatively we can show that v:state 6= deleted in line 7, since if v can not be deleted thenno v1 2 v:adjac can be selected. To show that v:state 6= deleted in line 7 we need to test three casesfor the processor of a vertex v1 that could delete v:{ Case 1) v1:proc < p: v would have blocked v1:proc from selecting v1, because mpivs(v1:adjac) �v:proc = p > v1:proc, so the test on line 6 would not have been satis�ed for v1 on processorv1:proc.{ Case 2) v1:proc = p: v would have been deleted, and not passed the test on line 5, as this processorselected v1 and by de�nition there is only one thread of control on each processor.{ Case 3) v1:proc > p: as mpivs(v:adjac) � v1:proc > p thus p 6� mpivs(v:adjac) the test on line 6would not have succeeded, line 7 would not be executed on processor p.Further we should show that a vertex v with v:state = selected can not be deleted, and v:state = deletedcan not be selected. For a v to have been selected by p it must have been selectable by p (i.e. fv1 2 v:adjac jv1:proc > p, v1:state 6= deletedg = ;). However for another processor p1 to delete v, p1 must select v1(p1 = v1:proc), this is not possible since if neither v nor v1 are deleted then only one processor can satisfyline 6 in Figure 3. This consistency argument will be developed further in x3. Thus, we have shown thatI = fv 2 V j v:state = selectedg is an independent set and, if SMMA terminates, I will be maximal as well.4

2.2 Distributed Memory AlgorithmFor a distributed memory version of this algorithm we will use a message passing paradigm and de-�ne some high level message passing operators. De�ne send(proc;X;Action) and receive(X;Action) -send(proc;X;Action) sends the object X and procedure Action to processor proc, receive(X;Action) willreceive this message on processor proc. Figure 4 shows a distributed memory implementation of our MISalgorithm running on processor p. We have assumed that the graph has been partitioned to processors 1 toP , thus de�ning Vp, V Sp , V Lp , V Bp , and v:proc for all v 2 V .A subtle distinction must now be made in our description of the distributed memory version of thealgorithm in Figure 4 and 5: vertices (e.g. v and v1) operate on local copies of the objects and not to asingle shared object. So, for example, an assignment to v:state refers to assignment to the local copy v onprocessor p. Each processor will have a copy of the set of vertices V Ep = Vp [V Sp , i.e. the local vertices Vpand one layer of \ghost" vertices. Thus all expressions will refer to the objects (vertices) in processor p'slocal memory.while fv 2 Vp j v:state = undoneg 6= ;forall v 2 V Bp - - implementation of Rule 1if v:state = undone thenif p � mpivs(v:adjac) then - - implementation of Rule 2Select(v)proc set fproc j v 2 V Sprocg � pforall proc 2 proc setsend(proc; v; Select)while receive(v;Action)if v:state = undone thenAction(v)forall v 2 V Lp - - implementation of Rule 1if v:state = undone thenif p � mpivs(v:adjac) then - - implementation of Rule 2Select(v)forall v1 2 V B \ v:adjac thenproc set fproc j v1 2 V Sprocg � pforall proc 2 proc setsend(proc; v1; Delete)I fv 2 V j v:state = selectedgFigure 4: Asynchronous Distributed Memory MIS Algorithm (ADMMA) running on processor pprocedure Select(v)v:state selectedforall v1 2 v:adjacDelete(v1)procedure Delete(v1)v1:state deletedFigure 5: ADMMA \Action" procedures running on processor pNote that the value of mpivs(v:adjac) will monotonically decrease as v1:state (v1 2 v:adjac) are deleted,thus as all tests to select a vertex, are of the form p � mpivs(v:adjac) some processors will have to wait forother processors to do their work (i.e. select and delete vertices). In our distributed memory algorithm inFigure 4 the communication time is added to the time that a processor may have to wait for work to be doneby another processor; this does not e�ect the correctness of the algorithm but it may e�ect the resulting5

MIS. Thus ADMMA is not a deterministic MIS algorithm; although the synchronous version - that we usefor our numerical results - is deterministic for any given partitioning.The correctness for ADMMA can be shown in a number of ways, but �rst we need to de�ne a weavingmonotonic path (WMP) as a path of length t in which each consecutive pair of vertices ((vi,vj) 2 E) satis�esvi:proc < vj:proc, see Figure 6.
P1 P4

P3
P6

Processor rank

P2 WMP

P8

P7

P5Figure 6: Weaving monotonic path (WMP) in a 2D �nite element meshOne can show that the semantics of ADMMA run on a partitioning of a graph is equivalent to a randomalgorithm with a particular set of \random" numbers. Alternatively, we can use the correctness argumentfrom the shared memory algorithm and show consistency in a distributed memory environment. To do this�rst make a small isomorphic transformation to ADMMA in Figure 4:� Remove v:state selected in Figure 5, and replace it with a memoization of v so as to avoid \selecting"v again.� Remove the \Select" message from Figure 4 and modify the Select procedure in Figure 5 to send theappropriate \Delete" messages to processors that \touch" v1 2 v:adjac.� Rede�ne I to be I = fv 2 V j v:state 6= deletedg at the end of the algorithm.� Change the termination test to: while (9v1 2 v:adjac j v 2 Vp; v:state 6= deleted; v1:state 6= deleted),or simply while (I is not independent).This does not change the semantics of the algorithm but removes the selected state from the algorithmand makes it mathematically simpler (although less concrete of a description). Now only Delete messagesneed to be communicated and v:state deleted is the only change of state in the algorithm. De�ne thedirected graph GWMP = (V S ; EWMP), EWMP = f(v; w) 2 E j v:proc < w:procg; in general GWMP willbe a forest of acyclic graphs. Further de�ne GWMPp = (V Sp ; EWMPp), EWMPp = f(v; w) 2 E j w:state 6=deleted; v:proc = pg. GWMPp is the current local view of GWMP with the edges removed for which the\source" vertices have been deleted. Rule 2 can now be restated: processor p can only select a vertex that isnot the end of an edge in EWMPp . Processors will delete \down stream" edges in EWMP and send messagesso as other processors can delete their \up stream" copies of these edges, thus GWMPp will be pruned as pdeletes vertices and receives delete messages. Informally, consistency for ADMMA can be inferred as theonly information ow (explicit delete messages between processors) moves down acyclic graphs in GWMP ;as the test, (8v1 2 v:adjac j v1:proc � p or v1:state = deleted) for processor p to select a vertex v, requiresthat all edges (in EWMP) to v are \deleted". Thus the order of the reception of these delete messages isinconsequential and there is no opportunity for race conditions or ambiguity in the results of the MIS. Moreformally we can show that these semantics insure that I = fv 2 V j v:state 6= deletedg is maximal andindependent:� I is independent as no two vertices (in I) can remain dependent forever. To show this we note thatthe only way for a processor p to not be able to select a vertex v is for v to have a neighbor v1 on a6

higher processor. If v1 is deleted then p is free to \select" v. Vertex v1 on processor p1 can in ternbe selected unless it has a neighbor v2 on a higher processor. Eventually the end of this WMP willbe reached and processor pt will process vt and thus release pt�1 to select vt�1 and on down the line.Therefore no pair of undone vertices will remain, and I will eventually be independent.� I is maximal as the only way for a vertex to be deleted is to have a selected neighbor. To show that novertex v that is \selected" can ever be deleted, as in our shared memory algorithm, we need to showthat three types of processors p1 with vertex v1 can not delete v.{ For p = p1: we have the correctness of the serial semantics of BMA to ensure correctness, i.e. v1would be deleted and p would not attempt to select it.{ For p > p1: p1 will not pass the mpivs(v1:adjac) test as in the shared memory case.{ For p < p1: p does not pass the mpivs(v1 :adjac) and will not \select" v in the �rst place.Thus I is maximal and independent.3 Complexity of the asynchronous maximal independent set algo-rithmIn this section we derive the complexity bound of our algorithm under the PRAM computational model.To understand the costs of our algorithm we need to bound the cost of each outer iteration, as well as,bound the total number of outer iterations. To do this we will �rst need to make some restrictions on thegraphs that we work with and the partitions that we use. We assume that our graphs come from physicalmodels, that is vertices are only connected by an edge to its nearest neighbors so the maximum degree �of any vertex is bounded. We will also assume that our partitions satisfy a certain criterion (for regularmeshes we can illustrate this criterion with regular rectangular partitions and a minimum logical dimensionthat depends only on the mesh type). We can bound the cost of each outer iteration by requiring that thesizes of the partitions are independent of the total number of vertices n. Further we will assume that theasynchronous version of the algorithm is made synchronous by including a barrier at the end of the \receive"while loop, in Figure 4, at which point all messages are received and then processed in the next forall loop.This synchronization is required to avoid more than one leg of a WMP from being processed in each outeriteration. We need to show that the work done in each iteration on processor p is of order Np (Np = jVpj).This is achieved if we use O(n) processors and can bound the load imbalance (i.e. maxfNpg=minfNpg) ofthe partitioning.LEMMA 3.1. With the synchronous version of ADMMA, the running time of the CREW PRAM version ofone outer iteration in Figure 4 is O(1) = O(n=P), if maxfNpg=minfNpg = O(1)Proof. We need to bound the number of processors that touch a vertex v i.e. jvjproc � ��proc j v 2 V Sproc��In all cases jvjproc is clearly bounded by �. Thus, max jvjproc � Np is O(1) and is an upper bound (anda very pessimistic bound) on the number of messages sent in one iteration of our algorithm. Under thePRAM computational model we can assume that messages are sent between processors in constant time andthus our communication costs in each iteration is O(1). The computation done in each iteration is againproportional to Np and bounded by � �Np, the number of vertices times the maximum degree. This is alsoa very pessimistic bound that can be gleaned by simply following all the execution paths in the algorithmand successively multiplying by the bounds on all of the loops (� and Np). The running time for each outeriteration is therefore O(1) = O(n ��=P). 2Notice for regular partitions jvjproc is bounded by 4 in 2D, and 8 in 3D, and that for optimal partitions oflarge meshes jvjproc is about 3 and 4 for 2D and 3D respectively. The number of outer iterations, in Figure4, is a bit trickier to bound. To do this we will need to look at the mechanism by which a vertex fails to beselected.THEOREM 3.1. The running time in the CREW PRAM computational model, of ADMMA, is bounded bythe maximum length weaving monotonic path in G. 7

Proof. To show that the number of outer iterations is bounded to the maximum length WMP in G, weneed to look at the mechanism by which a vertex can fail to be selected in an iteration of our algorithmand thus potentially require an additional iteration. For a processor p1 to fail to select a vertex v1, v1 musthave an undone neighbor v2 on a higher processor p2. For vertex v2 to not be selectable, v2 in turn musthave an undone neighbor v3 on a higher processor p3 and so on until vt is the top vertex in the WMP. Thevertex vt at the end of a WMP will be processed in the �rst iteration as there is nothing to stop vt:proc fromselecting or deleting vt. Thus, in the next iteration, the top vertex vt of the WMP will have been eitherselected or deleted; if vt was selected then vt�1 will have been deleted and the Undone WMP (UWMP), apath in GWMP , will be at most of length t � 2 after one iteration; and if vt was deleted (the worst case)then the UWMP could be of at most length t� 1. After t outer iterations the maximum length UWMP willbe of length zero, thus all vertices will be selected or deleted. Therefore, the number of outer iterations isbounded by the longest WMP in the graph. 2COROLLARY 3.1. ADMMA will terminate.Proof. Clearly the maximumlength of a WMP is bounded by the number of processors P . By THEOREM3.1 ADMMA will terminate in a maximum of P outer iterations. 2To attain our desired complexity bounds, we want to show that a WMP can not grow longer than aconstant. To understand the behavior of this algorithm we begin with a few observation about regularmeshes. Begin by looking at a regular partitioning of a 2D �nite element quadrilateral mesh. Figure 6 showsa 2D mesh and a partitioning with regular blocks of four (2 � 2) and a particular processor order. This isjust small enough to allow for a WMP to traverse the mesh inde�nitely, but clearly a nine (3 � 3) vertexpartitions would break this WMP and only allow it walk around partition intersections. Note that the (2�2)case would require just the right sequence of events to happen on all processors for this WMP to actuallygovern the run time of the algorithm. On a regular 3D �nite element mesh of hexahedra the WMP can coilaround a line between four processors and the required partition size, using the same arguments as in the 2Dcase, would be �ve vertices on each side (or one more than the number of processors that share a processorinterface line).For irregular meshes one has to look at the mesh partitioning mechanism employed. Partitions onirregular meshes in scienti�c and engineering applications will generally attempt to reduce the number ofedges cut (i.e. ��ES��) and balance the number of vertices on each partition (i.e. jVpj � p=n � 1). We willassume that such a partitioner is in use and make a few general observations. First the partitions of such amesh will tend to produce partitions in the shape of a hexagon in 2D for a large mesh with relatively largepartitions. This is because the partitioner is trying to reduce the surface to volume ratio of each partition.These partitions are not likely to have skinny regions where a WMP could jump through the partition, andthus the WMP is relegated to following the lines of partition intersections. We do not present statisticalor theoretical arguments as to the minimum partition size N that must be employed to bound the growthof a WMP for a given partitioning method; though clearly some constant N exists that, for a give �niteelement mesh type and a given reasonable partitioning method, will bound the maximumWMP length bya constant. This constant is roughly the number of partitions that come close to each other at some point,an optimal partitioning of a large D dimensional mesh will produce partitioning in which D + 1 partitionsmeet at any given point. Thus, when a high quality mesh partitioner is in use, we would expect to see thealgorithm terminate in at most four iterations on adequately well partitioned and sized three dimensional�nite element meshes.4 Numerical resultsWe present numerical experiments on an IBM SP with 80, 120 Mhz, Power2 processors at Argonne NationalLaboratory. An extended version of the Finite Element Analysis Program (FEAP)[11], is used to generateout test problems and produce our graphics. We use ParMetis [9] to calculate our partitions, and PETSC[2] for our parallel programming and development environment. Our code is implemented in C++, FEAPis implemented in FORTRAN, PETSc and ParMetis are implemented in C. We want to show that our com-plexity analysis is indicative of the actual behavior of the algorithm with real (imperfect) mesh partitioners.8

Our experiments con�rm our PRAM complexity model is indicative of the performance one can expect withpractical partitions on graphs of �nite element problems. Due to a lack of processors we are not able toinvestigate the asymptotics of our algorithm throughly.Our experiments will be used to demonstrate that we do indeed see the behavior that our theory predicts.Additionally we will use numerical experiments to quantify lower bound on the number of vertices perprocessor that our algorithm requires before growth in the number of outer iterations is observed. We willuse a parameterized mesh from solid mechanics for our test problem. This mesh is made of eight vertexhexahedral trilinear \brick" elements and is almost regular; the maximum degree � of any vertex is 26 inthe associated graph. Figure 7 shows one mesh (13882 vertices). The other meshes that we test are of thesame physical model but with di�erent scales of discretization.
Figure 7: 5296 Vertex 3D �nite element meshWe add synchronization to ADMMA on each processor by receiving all messages from neighboring pro-cessors in each iteration, to more conveniently measure the maximum length WMP that actually governs thenumber of outer iterations. Table 8 shows the results of the number of iterations required to calculate theMIS. Each case was run 10 times, as we do not believe that ParMetis is deterministic, but all 10 iterationcounts were identical, thus it seems that this did not e�ect any of our results. A perfect partitioning ofa large D-dimensional mesh with a large number of vertices per processor will result in D + 1 processorsintersecting at a \point", and D partitions sharing a \line". If these meshes are optimal we can expect thatthe length of these lines (of partition boundaries) will be of approximately uniform length. The length ofthese lines required to halt the growth of WMPs is D + 1 vertices on an edge, as discussed in x3. If theapproximate average size of each partition is that of a cube with this required edge length, then we wouldneed about 64 vertices per partition to keep the length of a WMP from growing past 4. This assumes thatwe have a perfect mesh, which we do not, but nonetheless this analysis gives an approximate lower boundon the number of vertices that we need per processor to maintain our constant maximumWMP length.ProcessorsVertices 8 16 24 32 40 48 56 64 72 80427 3 3 3 3 4 4 4 4 6 61270 2 4 3 3 4 4 4 3 4 32821 3 3 4 3 3 3 4 3 4 45296 2 2 3 3 3 3 4 3 3 38911 3 3 4 3 4 3 4 3 3 313882 3 3 3 3 3 3 3 3 3 3Figure 8: Average number of iterationsFigure 9 shows a graphic representation of this data for all partitions. The growth in iteration countfor constant graph size is reminiscent of the polylogarithmic complexity of at or vertex based random MISalgorithms [8]. Although ParMetis does not specify the ordering of processors, it is not likely to be very9

random. These results show that the largest number of vertices per processor that \broke" the estimate ofour algorithms complexity bound is about 7 (6.5 average) and the smallest number of vertices per processorthat stayed at our bound of 4 iterations was also about 7 (7.3 average). To demonstrate our claim of O(1)PRAM complexity we only require that there exists a bound N on the number of vertices per processor thatis required to keep a WMP form growing beyond the region around a point where processors intersect. Theseexperiments do not show any indication that that such an N does not exist. Additionally these experimentsshow that our bounds are quite pessimistic for the number of processors that we were able to use. This datasuggests that we are far away from the asymptotics of this algorithm, that is, we need many more processorsto have enough of the longest WMPs so that one consistently governs the number of outer iterations.
2000

4000

6000

8000

10000

12000

10

20

30

40

50

60

70

80

0

5

10

Processors

Average Number of Iterations

VerticesFigure 9: Average Iterations vs. number of processors and number of vertices5 ConclusionWe have presented a new maximal independent set algorithm that, for graphs arising from �nite elementanalysis, possesses optimal (i.e. O(1) PRAM complexity), if an adequate mesh partitioner is employed. Theparticular mesh partitions that we require for our complexity analysis have been shown to be attainable(based on numerical experiments using a publicly available mesh partitioner). That is with ParMetis andabout a hundred vertices per processor, our algorithm terminates in a small (� 4) number of iterations. Ouralgorithm is novel in that it explicitly utilizes the partitionings that are freely available to stop the growth ofmonotonic paths which are responsible for the polylogarithmic complexity of at or vertex based algorithms.We have concentrated on the practical issues of our algorithm but have not fully explored the theoreticalissues. Some areas of future work could be:� Can this method provide for an improvement in the complexity bounds of more general graphs?� Can the graph partitioning be incorporated into a complexity model of this method and maintain atheoretically optimal complexity bound? Some potential directions for such partitioners are{ Geometric partitioners [5].{ A level set partitioning algorithm.Acknowledgments. This work is supported by DOE (grant No. W-7405-ENG-48), and we would liketo thank Steve Ashby for his support of our e�orts. We gratefully acknowledge Argonne National Laboratory10

for the use of their IBM SP for the program development and numerical results presented in this paper. Wewould also like to thank R.L. Taylor at the University of California, Berkeley for his helpful comments, andfor providing and supporting FEAP.References[1] Mark Adams. Heuristics for the automatic construction of coarse grids in multigrid solvers for �niteelement matrices. Technical Report UCB//CSD-98-994, University of California, Berkeley, 1998.[2] S. Balay, W.D. Gropp, L. C. McInnes, and B.F. Smith. PETSc 2.0 users manual. Technical report,Argonne National Laboratory, 1996.[3] D. Brelaz. New method to color the vertices of a graph. Comm ACM, 22:251{256, 1979.[4] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking.Information and Control, 70:32{56, 1986.[5] John R. Gilbert, Gary L. Miller, and Shang-Hua Teng. Geometric mesh partitioning: implementationand experiments. Technical Report CSL-94-13, Xerox Palo Alto Research Center, 1994.[6] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel symetry-breaking in sparsegraphs. In Proc. of the 19th ACM Symp. on Theory of Computing, 1987.[7] Ellis Horowititz and Sartaj Sahni. Fundementals of computer algorithms. Galgotia Publications, 1988.[8] Mark T. Jones and Paul E. Plassman. A parallel graph coloring heuristic. SIAM J. Sci. Comput.,14(3):654{669, 1993.[9] George Karypis and Kumar Vipin. Parallel multilevel k-way partitioning scheme for irregular graphs.Supercomputing, 1996.[10] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput.,4:1036{1053, 1986.[11] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. McGraw-Hill, London, 4 edition, 1989.
11

